家教王老师的文章专栏 |
---|
一次二次函数知识点概括
发表于:2014-07-30阅读:46次
|
以下概括的是人教版一次函数和二次函数的知识点。 关于一次函数 (1) 一次函数 如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数. 特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数. (2) 一次函数的图象 一次函数y=kx+b的图象是一条经过(0,b)点和 点的直线. 特别地,正比例函数图象是一条经过原点的直线. 需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象. (3) 一次函数的性质 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小. 直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为 . (4) 用函数观点看方程(组)与不等式 ①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标. ②二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标. ③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围. 关于二次函数 1、.二次函数的图象 二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线. 由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象. 2、二次函数的性质 二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质: (1)抛物线y=ax2+bx+c的顶点是 ,对称轴是直线 ,顶点必在对称轴上; (2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x< 时,y随x的增大而减小;当x> 时,y随x的增大而增大;当x= ,y有最小值 ; 若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x< ,y随x的增大而增大;当 时,y随x的增大而减小;当x= 时,y有最大值 ; (3)抛物线y=ax2+bx+c与y轴的交点为(0,c); (4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况: <0时,抛物线y=ax2+bx+c与x轴没有公共点.D=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点。 |