2011年全国各地中考数学真题分类汇编
第45章 阅读理解型1. (2011江苏南京,28,11分)
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小
值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为.
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
1. 填写下表,画出函数的图象:
x |…… | | | |1 |2 |3 |4 |…… | |y |…… | | | | | | | |…… | |
②观察图象,写出该函数两条不同类型的性质;
③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可
以通过配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.
【答案】解:⑴①,,,2,,,.
函数的图象如图.
...点击查看全部>>
②本题答案不唯一,下列解法供参考.
当时,随增大而减小;当时,随增大而增大;当
时函数的最小值为2.
③
=
=
=
当=0,即时,函数的最小值为2.
⑵当该矩形的长为时,它的周长最小,最小值为.
2. (2011江苏南通,27,12分)(本小题满分12分)
已知A(1,0), B(0,-1),C(-1,2),D(2,-1),E(4,2)五个点,抛物线y=a
(x-1)2+k(a>0),经过其中三个点.
1. 求证:C,E两点不可能同时在抛物线y=a (x-1)2+k(a>0)上;
2. 点A在抛物线y=a (x-1)2+k(a>0)上吗?为什么?
3. 求a和k的 值.
【答案】(1)证明:将C,E两点的坐标代入y=a (x-1)2+k(a>0)得,
,解得a=0,这与条件a>0不符,
∴C,E两点不可能同时在抛物线y=a (x-1)2+k(a>0)上.
(2)【法一】∵A、C、D三点共线(如下图),
∴A、C、D三点也不可能同时在抛物线y=a (x-1)2+k(a>0)上.
∴同时在抛物线上的三点有如下六种可能:
①A、B、C;
②A、B、E;
③A、B、D;
④A、D、E;
⑤B、C、D;
⑥B、D、E.
将①、②、③、④四种情况(都含A点)的三点坐标分别代入y=a
(x-1)2+k(a>0),解得:①无解;②无解;③a=-1,与条件不符,舍去;④无解
.
所以A点不可能在抛物线y=a (x-1)2+k(a>0)上.
【法二】∵抛物线y=a (x-1)2+k(a>0)的顶点为(1,k)
假设抛物线过A(1,0),则点A必为抛物线y=a
(x-1)2+k(a>0)的顶点,由于抛物线的开口向上且必过五点A、B、C、D、E中
的三点,所以必过x轴上方的另外两点C、E,这与(1)矛盾,所以A点不可能在抛
物线y=a (x-1)2+k(a>0)上.
(3)Ⅰ.当抛物线经过(2)中⑤B、C、D三点时,则
,解得
Ⅱ. 当抛物线经过(2)中⑥B、D、E三点时,同法可求:.
∴或.
3.
(2011四川凉山州,28,12分)如图,抛物线与轴交于(,0)、(
,0)两点,且,与轴交于点,其中是方程的两个根。(1)求抛物线的解析式;
(2)点是线段上的一个动点,过点作∥,交于点
,连接,当的面积最大时,求点的坐标;
(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点
,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点
的坐标,若不存在,请说明理由。
【答案】
(1)∵,∴,。
∴,。
又∵抛物线过点、、,故设抛物线的解析式为,将点
的坐标代入,求得。
∴抛物线的解析式为。
(2)设点的坐标为(,0),过点作轴于点(如图(1))
。
∵点的坐标为(,0),点的坐标为(6,0),
∴,。
∵,∴。
∴,∴,∴。
∴
。
∴当时,有最大值4。
此时,点的坐标为(2,0)。
(3)∵点(4,)在抛物线上,
∴当时,,
∴点的坐标是(4,)。
1. 如图(2),当为平行四边形的边时,,
∵(4,),∴错误!链接无效。。
∴,。
2. 如图(3),当为平行四边形的对角线时,设,
则平行四边形的对称中心为(,0)。
∴的坐标为(,4)。
把(,4)代入,得。
解得 。
,。
4.
(2011江苏苏州,28,9分)(本题满分9分)如图①,小慧同学吧一个正三角形纸片(即
△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋
转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕B
1点按顺时针方向旋转120°,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上
述两次旋转到达O2处).
小慧还发现:三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆
弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,并且这两端圆弧
与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和
.
小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直
线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处
(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1
绕B1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题: 问题①:若正方形纸片OABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点
O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形OABC按上述方法经过
5次旋转,求顶点O经过的路程;
问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是π?
请你解答上述两个问题.
【答案】解问题①:如图,正方形纸片OABC经过3次旋转,顶点O运动所形成的图形是三段
弧,即弧OO1、弧O1O2以及弧O2O3,
∴顶点O运动过程中经过的路程为
.
顶点O在此运动过程中所形成的图形与直线l2围成图形的面积为
=1+π.
正方形OABC经过5次旋转,顶点O经过的路程为
.
问题②:∵方形OABC经过4次旋转,顶点O>>收起