优秀教案高中数学第二册上:7.6 圆的方程(1)
-
- 0
- 已有0人评价
- 资料编号:16180
- 资料类型:教案/高二上册/数学
- 资料版本:人教版
- 适用范围:全国通用
- 授权方式:转载
- 所属地区:北京市
- 资料格式:doc
- 上传日期:2011-08-31
- 等级评定:免费资源
- 下载次数:37
资源概述与简介:
课 题:7.6圆的标准方程
教学目的:
使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写
出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际
问题,并会推导圆的标准方程.
教学重点:圆的标准方程的推导步骤;根据具体条件正确写出圆的标准方程
教学难点:运用圆的标准方程解决一些简单的实际问题
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
学习了“曲线与方程“之后,作为一般曲线典体例子,安排了本节的“圆的方程”
圆是学生比较熟悉的曲线,在初中曾经学习过圆的有关知识,本节内容是在初中所学知
识及前几节内容的基础上,进一步运用解析法研究它的方程,它与其他图形的位置关系
及其应用同时,由于圆也是特殊的圆锥曲线,因此,学习了圆的方程,就为后面学习其
它圆锥曲线的方程奠定了基础也就是说,本节内容在教材体系中起到承上启下的作用,
具有重要的地位,在许多实际问题中也有着广泛的应用
由于“圆的方程”一节内容的基础性和应用的广泛性,对圆的标准方程、一般方程
...点击查看全部>>
的
要求层次是“掌握”;因为是第一次系统地介绍参数方程,对参数方程的学习有一个循序
渐进的过程,因而对圆的参数方程只要求“理解”,今后讲圆锥曲线时还有所涉及结合本
节的内容的特点,可以向学生渗透多种数学思想方法,同时对学生的观察类比、创新等
多种能力的培养也十分有利
在运用多种方法求圆的方程中,可培养学生大胆探索创新的精神;通过知识的实际运用
和采用多媒体手段,培养学生学习数学的兴趣;而一些曲线上动点的变化,和方程形式
,解法的多样,也有助于学生树立辩证唯物主义的运动观和普遍联系的观点
遵循从特殊到一般的原则,只有把圆的标准方程学透了,再过渡到学圆的一般也就
不难,它们可以通过形式上的互相转化而解决
因而本节的重点是圆的标准方程及直线与圆的位置关系(尤其是圆的切线)又由于圆的
一般方程中含有三个参变数D、E、F,对它的理解带来一定的困难,因而本节的难点是对
圆的一般方程的认识、掌握和运用突破难点的关键是抓住一般方程的特点,把握住求圆
的方程的两个基本要素:圆心坐标和半径
依照大纲,本节分为三个课时进行教学第一课时讲解圆的标准方程
为了激发学生的主体意识,教学生学会学习和学会创造,同时培养学生的应用意识
,本节内容可采用“引导探究”型教学模式进行教学设计所谓“引导探究”是教师把教学内
容设计为若干问题,从而引导学生进行探究的课堂教学模式,教师在教学过程中,主要
着眼于“引”,启发学生“探”,把“引”和“探”有机的结合起来。教师的每项教学措施,都
是给学生创造一种思维情景,一种动脑、动手、动口并主动参与的学习机会,激发学生
的求知欲,促使学生解决问题 其基本教学模式是:
教学过程:
一、复习引入:
1.圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆
2.求曲线方程的一般步骤为:
(1)建立适当的坐标系,用有序实数对表示曲线上任意一点M的坐标;
(2)写出适合条件P的点M的集合;(可以省略,直接列出曲线方程)
(3)用坐标表示条件P(M),列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点
(可以省略不写,如有特殊情况,可以适当予以说明)
二、讲解新课:
1.建立圆的标准方程的步骤:建系设点;写点集;列方程;化简方程
2. 圆的标准方程 :
已知圆心为,半径为, 如何求的圆的方程?
运用上节课求曲线方程的方法,从圆的定义出发,正确地推导出:
这个方程叫做圆的标准方程
若圆心在坐标原点上,这时,则圆的方程就是
3.圆的标准方程的两个基本要素:圆心坐标和半径
圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要三个量确
定了且>0,圆的方程就给定了这就是说要确定圆的方程,必须具备三个独立的条
件确定,可以根据条件,利用待定系数法来解决
三、讲解范例:
例1 写出下列各圆的方程
(1)圆心在原点,半径是3.
(2)圆心在(3,4),半径是
(3)经过点P(5,1),圆心在点C(8,-3).
例2 说出下列圆的圆心坐标和半径
(1) (x-3)2+(y+2)2=4.
(2) (x+4)2+(y-2)2=7.
(3) x2+(y+1)2=16.
例3 求以C(1,3)为圆心,并且和直线相切的圆的方程
解:已知圆心坐标C(1,3),故只要求出圆的半径,就能写出圆的标准方程因为圆C和直
线相切,所以半径就等于圆心C到这条直线的距离根据点到直线的距离公式,
得
因此,所求的圆的方程是
点评:
由本题可知,圆的标准方程是由圆心坐标和半径两因素决定的而且圆的半径与圆的切线
有着非常密切的联系,解题要注意运用圆的切线的性质解题时画出草图可帮助思考
例4 已知圆的方程,求经过圆上一点的切线方程
解:分析(一):如图,设切线的斜率为,半径OM的斜率为
因为圆的切线垂直于过切点的半径,于是
∵ ∴
经过点M的切线方程是 ,
整理得
因为点在圆上,所以,所求切线方程是
分析(二):利用向量。设P为切线上任意一点,则,所以:,即(x0,y0)·(x
-x0,y-y0)=0所以圆心在圆点切线方程为:x0x+y0y=r2
点评:
用斜率的知识来求切线方程,这就是“代数方程”:即设出圆的切线方程,将其代入到圆
的方程,得到一个关于或的一元二次方程,利用判别式进行求解,但此法不
如用几何方法简练实用,几何方法就是利用圆心到直线的距离等于半径(本题利用了圆心
到切点的距离为半径的知识),由此确定了斜率的,从而得到点斜式的切线方程,以上两
种方法只能求出存在斜率的切线,若斜率不存在,则要结合图形配补
例5
如图是某圆拱桥的一孔圆拱示意图.该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m
需要用一个支柱支撑,求支柱A2P2 的长度(精确到0.01m).
例6 已知圆心在x轴上,且距原点距离3个单位,半径为5的圆的方程.
四、课堂练习:
1.求下列各圆的标准方程:
(1)圆心在上且过两点(2,0),(0,-4);
(2)圆心在直线上,且与直线切于点(2,-1).
(3)圆心在直线上,且与坐标轴相切
分析:从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定
三个参数
解:(1)设圆心坐标为(),则所求圆的方程为,
∵圆心在上,∴ ①
又∵圆过(2,0),(0,-4)∴ ②
③
由①②③联立方程组,可得
∴所求圆的方程为
(2)∵圆与直线相切,并切于点M(2,-1),则圆心必在过点M(2,-
1)且垂直于的直线:上,
,即圆心为C(1,-2),=,
∴所求圆的方程为:
>>收起
其他相关资源
-
陕西省/课件/高考/数学
3.2同角三角函数的基本关系及诱导公式...
2019-06-18下载0次3.13M
-
陕西省/模拟题/高考/数学
【2015天津文12】已知 则当a的值为 时, 取得最大值....
2017-10-21下载3次43K
-
湖北省/学案/高二上册/数学
鑫三好数学高中数学培训讲义,由数学培优网熊老师编写...
2017-09-26下载6次107.87K
-
湖北省/学案/高二上册/数学
武汉鑫三好数学高中数学培训讲义,由数学培优网熊老师编写...
2017-09-26下载2次116.88K