中考数学压轴题汇编(1)
1、(安徽)按右图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据
y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和10
0)之间的数据,变换成一组新数据后能满足下列两个要求: (Ⅰ)新数据都在60~100(含60和100)之间; (Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新
数据也较大。 (1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述
两个要求; (2)若按关系
...点击查看全部>>
式y=a(x-h)2+k (a>0)将数据进行变换,请写出一个满足上述要求
的这种关系式。(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)
【解】(1)当P=时,y=x+,即y=。 ∴y随着x的增大而增大,即P=时,满足条件(Ⅱ)……3分 又当x=20时,y==100。而原数据都在20~100之间,所以新数据都在60~100之
间,即满足条件(Ⅰ),综上可知,当P=时,这种变换满足要求;……6分 (2)本题是开放性问题,答案不唯一。若所给出的关系式满足:(a)h≤20;(b)
若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求。 如取h=20,y=,……8分 ∵a>0,∴当20≤x≤100时,y随着x的增大…10分 令x=20,y=60,得k=60 ① 令x=100,y=100,得a×802+k=100 ② 由①②解得, ∴。………14分 2、(常州)已知与是反比例函数图象上的两个点. (1)求的值; (2)若点,则在反比例函数图象上是否存在点,使得以四点
为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由.
解:(1)由,得,因此. 2分 (2)如图1,作轴,为垂足,则,,,因此. 由于点与点的横坐标相同,因此轴,从而. 当为底时,由于过点且平行于的直线与双曲线只有一个公共点
, 故不符题意. 3分 当为底时,过点作的平行线,交双曲线于点, 过点分别作轴,轴的平行线,交于点. 由于,设,则,, 由点,得点. 因此, 解之得(舍去),因此点. 此时,与的长度不等,故四边形是梯形. 5分
如图2,当为底时,过点作的平行线,与双曲线在第一象限内的交点
为.由于,因此,从而.作轴,为垂足,则,设,则, 由点,得点, 因此. 解之得(舍去),因此点. 此时,与的长度不相等,故四边形是梯形. 7分 如图3,当过点作的平行线,与双曲线在第三象限内的交点为时,同理可得,点,四边形是梯形. 9分 综上所述,函数图象上存在点,使得以四点为顶点的四边形为梯形
,点的坐标为:或或. 10分 3、(福建龙岩)如图,抛物线经过的三个顶点,已知轴,点
在轴上,点在轴上,且. (1)求抛物线的对称轴; (2)写出三点的坐标并求抛物线的解析式; (3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是
等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.
解:(1)抛物线的对称轴………2分 (2) …………5分 把点坐标代入中,解得………6分 …………………………………………7分
(3)存在符合条件的点共有3个.以下分三类情形探索. 设抛物线对称轴与轴交于,与交于. 过点作轴于,易得,,,1. 以为腰且顶角为角的有1个:. 8分 在中, 9分 ②以为腰且顶角为角的有1个:. 在中, 10分 11分 ③以为底,顶角为角的有1个,即. 画的垂直平分线交抛物线对称轴于,此时平分线必过等腰的顶点
. 过点作垂直轴,垂足为,显然. . 于是 13分 14分 注:第(3)小题中,只写出点的坐标,无任何说明者不得分. 4、(福州)如图12,已知直线与双曲线交于两点,且点的横
坐标为. (1)求的值; (2)若双曲线上一点的纵坐标为8,求的面积; (3)过原点的另一条直线交双曲线于两点(点在第一象
限),若由点为顶点组成的四边形面积为,求点的坐标. 解:(1)∵点A横坐标为4 , ∴当 = 4时, = 2 . ∴ 点A的坐标为( 4,2 ). ∵ 点A是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 . (2) 解法一:如图12-1, ∵ 点C在双曲线上,当 = 8时, = 1 ∴ 点C的坐标为 ( 1, 8 ) . 过点A、C分别做轴、轴的垂线,垂足为M、N,得矩形DMON . S矩形ONDM= 32 , S△ONC = 4 , S△CDA = 9, S△OAM = 4 . S△AOC= S矩形ONDM - S△ONC - S△CDA - S△OAM = 32 - 4 - 9 - 4 = 15 . 解法二:如图12-2, 过点 C、A分别做轴的垂线,垂足为E、F, ∵ 点C在双曲线上,当 = 8时, = 1 . ∴ 点C的坐标为 ( 1, 8 ). ∵ 点C、A都在双曲线上 , ∴ S△COE = S△AOF = 4 。 ∴ S△COE + S梯形CEFA = S△COA + S△AOF . ∴ S△COA = S梯形CEFA . ∵ S梯形CEFA = ×(2+8)×3 = 15 ,
∴ S△COA = 15 .
(3)∵ 反比例函数图象是关于原点O的中心对称图形 , ∴ OP=OQ,OA=OB . ∴ 四边形APBQ是平行四边形 . ∴ S△POA = S平行四边形APBQ = ×24 = 6 . 设点P的横坐标为( > 0且), 得P ( , ) .
过点P、A分别做轴的垂线,垂足为E、F, ∵ 点P、A在双曲线上,∴S△POE = S△AOF = 4 . 若0<<4,如图12-3, ∵ S△POE + S梯形PEFA = S△POA + S△AOF, ∴ S梯形PEFA = S△POA = 6 . ∴ . 解得= 2,= - 8(舍去) . ∴ P(2,4). 若 > 4,如图12-4, ∵ S△AOF+ S梯形AFEP = S△AOP + S△POE, ∴ S梯形PEFA = S△POA = 6 . ∴, 解得 = 8, = - 2 (舍去) . ∴ P(8,1). ∴ 点P的坐标是P(2,4)或P(8,1).
5、(甘肃陇南)如图,抛物线交轴于A、B两点,交轴于点C,点P是
它的顶点,点A的横坐标是3,点B的横坐标是1. (1)求、的值; (2)求直线PC的解析式; (3)请探究以点A为圆心、直径为5的圆与直线 >>收起