家教王老师的文章专栏 | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
三角形知识点复习归纳总结
发表于:2015-07-21阅读:158次
|
|||||||||||||||||||||||||||||||
三角形知识点复习归纳总结 ⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.
注意:(1)三条线段要不在同一直线上,且首尾顺次相接; (2)三角形是一个封闭的图形; (3)△ABC是三角形ABC的符号标记,单独的△没有意义.
⒉ 三角形的分类: (1)按边分类:
⒊ 三角形的主要线段的定义:
三角形中,连结一个顶点和它对边中点的线段. 表示法:1.AD是△ABC的BC上的中线. 2.BD=DC= 注意:①三角形的中线是线段; ②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD是△ABC的∠BAC的平分线. 2.∠1=∠2= 注意:①三角形的角平分线是线段; ②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:1.AD是△ABC的BC上的高线. 2.AD⊥BC于D. 3.∠ADB=∠ADC=90°. 注意:①三角形的高是线段; ②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外; ③三角形三条高所在直线交于一点.
⒋ 三角形的主要线段的表示法: 三角形的角平分线的表示法: 如图1,根据具体情况使用以下任意一种方式表示: ① AD是DABC的角平分线; ② AD平分ÐBAC,交BC于D;
(2)三角形的中线表示法: 如图1,根据具体情况使用以下任意一种方式表示: ①AE是DABC的中线; ②AE是DABC中BC边上的中线; ③如果AE是DABC的中线,那么BE=EC=
(3)三角线的高的表示法: 如图2,根据具体情况,使用以下任意一种方式表示: ① AM是DABC的高; ② AM是DABC中BC边上的高; ③ 如果AM是DABC中BC边上高,那么AM^BC,垂足是E; ④ 如果AM是DABC中BC边上的高,那么ÐAMB=ÐAMC=90°. ⒌ 在画三角形的三条角平分线,三条中线,三条高时应注意: (1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.
如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.
⒍三角形的三边关系 三角形的任意两边之和大于第三边;任意两边之差小于第三边. 注意:(1)三边关系的依据是:两点之间线段是短; (2)围成三角形的条件是任意两边之和大于第三边.
⒎ 三角形的角与角之间的关系: (1)三角形三个内角的和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角的和; (3)三角形的一个外角大于任何一个和它不相邻的内角. (4)直角三角形的两个锐角互余.
三角形的内角和定理 定理:三角形的内角和等于180°. 推论:直角三角形的两个锐角互余。 推理过程: 一、作CM∥AB,则∠4=∠1,而∠2+∠3+∠4=1800, 即∠A+∠B+∠ACB=1800. 二、作MN∥BC,则∠2=∠B,∠3=∠C,而∠1+∠2+∠3=1800,
注意:(1)证明的思路很多,基本思想是组成平角.
三角形的外角的定义 三角形一边与另一边的延长线组成的角,叫做三角形的外角. 注意:每个顶点处都有两个外角,但这两个外角是对顶角. 如:∠ACD、∠BCE都是△ABC的外角,且∠ACD=∠BCE. 所以说一个三角形有六个外角,但我们每个一个顶点处 只选一个外角,这样三角形的外角就只有三个了. 三角形外角的性质 (1)三角形的一个外角等于它不相邻的两个内角之和.
注意:(1)它不相邻的内角不容忽视; (2)作CM∥AB由于B、C、D共线 ∴∠A=∠1,∠B=∠2. 即∠ACD=∠1+∠2=∠A+∠B. 那么∠ACD>∠A.∠ACD>∠B.
8.三角形的稳定性: 三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性. 注意:(1)三角形具有稳定性; (2)四边形没有稳定性.
适当添加辅助线,寻找基本图形
(2)基本图形二,如图9,如果CO是ÐAOB的角平分线,DE∥OB交OA,OC于D,E,那么DDOE是等腰三角形,DO=DE.当几何问题的条件和结论中,或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.即:角平分线+平行线→等腰三角形.
基本图形三,如图10,如果BD是ÐABC的角平分线,M是AB上一点,MN^BD,且与BP,BC相交于P,N.那么BM=BN,即DBMN是等腰三角形,且MP=NP,即:角平分线+垂线→等腰三角形. 当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰三角形不完整就应将基本图形补完整,如图11,图12.
|