家教初中数学的文章专栏 |
---|
你能证明它们吗(一)教案
发表于:2012-09-20阅读:23次
|
九年级上期数学教案 §1.1、你能证明它们吗(一) 一、教学目标: 1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。 2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。 3、结合实例体会反证法的含义。 二、教学重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。 教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。 三、教学方法:观察法。 四、教学过程: 复习: 1、什么是等腰三角形? 2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。 3、试用折纸的办法回忆等腰三角形有哪些性质? 新课讲解: 在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。 同学们和我一起来回忆上学期学过的公理 w 本套教材选用如下命题作为公理 : w 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行; w 2.两条平行线被第三条直线所截,同位角相等; w 3.两边夹角对应相等的两个三角形全等; (SAS) w 4.两角及其夹边对应相等的两个三角形全等; (ASA) w 5.三边对应相等的两个三角形全等; (SSS) w 6.全等三角形的对应边相等,对应角相等. 由公理5、3、4、6可容易证明下面的推论: 推论 两角及其中一角的对边对应相等的两个三角形全等。(AAS) 已知:∠A=∠D,∠B=∠E,BC=EF 求证:△ABC≌△DEF 证明:∵∠A+∠B+∠C=180°, ∠D+∠E+∠F=180° (三角形内角和等于180°) ∴∠C=180°-(∠A+∠B) ∠F=180°-(∠D+∠E) 又∵∠A=∠D,∠B=∠E(已知) ∴∠C=∠F 又∵BC=EF(已知) ∴△ABC≌△DEF(ASA) 定理:等腰三角形的两个底角相等。 这一定理可以简单叙述为:等边对等角。 已知:如图,在ABC中,AB=AC。 求证:∠B=∠C 证明:取BC的中点D,连接AD。 ∵AB=AC,BD=CD,AD=AD, ∴△ABC△≌△ACD (SSS) ∴∠B=∠C (全等三角形的对应边角相等) (让同学们通过探索、合作交流找出其他的证明方法。做∠BAC的平分线,交BC边于D;过点A做AD⊥BC。。学生指出该定理的条件和结论,写出已知、求证,画出图形,并选择一种方法进行证明。) 想一想: 在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论? (应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,讨论图中存在的相等的线段和相等的角,发现等腰三角形性质定理的推论,从而得到结论,这一结合通常简述为“三线合一”。) 推论 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。 随堂练习: 做教科书第4页第1,2题。(引导学生分析证明方法,学生动手证明,写出证明过程。) 课堂小结: 通过这节课的学习你学到了什么知识? (学生小结:通过本课的学习我们了解了作为基础的几条公理的内容,掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。探体会了反证法的含义。) 五、作业:1、基础作业:P5页习题1.1 1、2。 2、拓展作业:《目标检测》3、预习作业:P5-6页 议一议 六、板书设计: 七、课后记: |