家教初中数学的文章专栏 |
---|
你能证明它们吗(二)教案
发表于:2012-09-20阅读:15次
|
§1.1、你能证明它们吗(二) 一、教学目标: 1、进一步了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。 2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。 3、能够用综合法证明等腰三角形的判定定理。 4、了解反证法的推理方法。 5、会运用“等角对等边”解决实际应用问题及相关证明问题。 二、教学重点:正确叙述结论及正确写出证明过程。熟悉作为证明基础的几条公理的内容,通过学习,掌握证明的基本步骤和书写格式。 教学难点:等腰三角形的定理应用及由特殊结论归纳出一般结论。 三、教学方法:探究式教学法 自主探究与合作探究 四、教学过程: 复习回顾: 你知道等腰三角形具有怎样的性质吗?、 探索——发现——猜想——证明 1、引导探索:等腰三角形顶角的平分线、底边上的中线和高线具有上述的性质,那么,两底角的平分线、两腰上的中线和高线又具有怎样的性质呢? (提出问题,激发学生探究的欲望。学生猜想) 2、探究中发现:在等腰三角形中做出两底角的平分线,你会发现图中有那些相等的线段?你能用文字叙述你的结论吗? (学生动手画图、探索发现相等的线段并思考为什么相等)
A C B D E 3、证明: (1) 例1 证明:等腰三角形两底角的平分线相等。 (引导学生分清条件和结论、画图、写出已知、求证。) 已知:如图,在△ABC中,AB=AC,BD,CE是 △ ABC的角平分线。 求证:BD=CE(一生口述证明过程,然后写出证明过程。) 证明:(略) 此题还有其它的证法吗? (2) 你能证明等腰三角形两条腰上的中线相等吗?高呢? (引导学生分清条件和结论、画图、写出已知、求证并证明。其它证法合作交流完成。) 4、议一议1: 在上图的等腰△ABC中,如果∠ABD=1/3∠ABC, ∠ACE=1/3∠ACB,那么BD=CE吗?如果∠ABD=1/4∠ABC, ∠ACE=1/4∠ACB呢?由此你能得到一个什么结论? (根据图形引导学生分析归纳得出一般结论。学生分组思考、交流,在充分讨论的基础上得出一般结论写出证明过程。) (3) 如果AD=1/2AC,AE=1/2AB, 那么BD=CE吗?如果AD=1/3AC,AE=1/3AB, 呢?由此你能得到一个什么结论? 议一议2: 把“等边对等角”反过来还成立吗?你能证明? 定理证明 已知:在ΔABC中∠B=∠C 求证:AB=AC (引导学生证明定理) 方法如下: (课堂小结1: (1)归纳判定等腰三角形判定有几种方法, (2) A B C D EE 证明两条线段相等的方法有哪几种。(讨论、交流) 随堂练习: 已知:在ΔABC中,AB=AC,D在AB上,DE∥AC 求证:DB=DE (引导学生分析证明方法,学生动手证明,写出证明过程。) 想一想:
A C B 小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,你认为这个结论成立吗?如果成立,你能证明它? 证明P8 反证法的概念 P8 课堂小结2: 通过这节课的学习你学到了什么知识?了解了什么证明方法? (学生小结:掌握证明的基本步骤和书写格式。经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的两条腰上的中线(高)、两底角的平分线相等,并由特殊结论归纳出一般结论。等腰三角形的判定定理。了解反证法的推理方法。) 五、作业:1、基础作业:P9页习题1.2 1、2、3。 2、拓展作业:《目标检测》 3、预习作业:P10-12页 做一做 六、板书设计: 七、课后记:
|