家教牛魔王的文章专栏 |
---|
几何中的分类讨论解题研究
发表于:2012-02-09阅读:225次
|
如果一个命题的题设或结论不唯一确定,有多种可能情况,难以统一解答,就需要按可能出现的各种情况分门别类地加以讨论,最后综合归纳出问题的正确答案,这种解题方法叫做分类讨论法。它是一种比较重要的解题方法,也是近年来中考命题的热点内容之一;要用分类讨论法解答的数学题目,往往具有较强的逻辑性、综合性和探索性,既能全面考查学生的数学能力又能考查学生的思维能力,分类讨论问题充满了数学辨证思想,它是逻辑划分思想在解决数学问题时的具体运用。
初中数学中的分类讨论问题往往是学生不容易掌握好的一类问题,学生碰到此类问题常常是不知道要进行分类讨论或者知道了要分类讨论而无从入手,造成解答此类问题时得分率偏低,分类讨论问题主要有: 1.代数类:代数有绝对值、方程及根的定义,函数的定义以及点(坐标未给定)所在象限等; 2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情况等; 3.综合类:代数与几何分类情况的综合运用. 【归纳】在研究几何问题时,由于图形的变化(图形位置不确定或形状不确定)引起几何问题结果有多种可能,就需要分类讨论,在这里对常见的几种情况进行归纳: 一、高. 方法一:由于三角形的高可在三角形的内部、外部或与边重合,所以在解决问题时常常将三角形分成锐角三角形、直角三角形和钝角三角形. 例1为了美化环境,计划在小区内用120m 的草皮铺设一块一边长为20的等腰三角形绿地,请求出这个三角形的另两条边长. 分析:由题中已知一边长20m的等腰三角形,可分为底边长为20m或腰长为20m两种情况,如图1由底边长为20m和面积为120m 可求得底边上的高为12m,进而求得两腰长都为2 m,由腰长为20m和面积为120m 分析时难度较大,需考虑将三角形分成锐角三角形、直角三角形和钝角三角形,直角三角形的情况不成立,可分别得到图2和图3两种情况来研究.
方法二:比例尺画图法 例2小刚玩拼图游戏,所拼成的图形是一个三角形,量得两边长分别为20cm、25cm,第三边上的高为15cm,请你帮助他计算这个图形的面积. 在教学中我不仅要求学生掌握这种分类方法,同时还要求学生按条件用比例尺画图,并深入思考画图的步骤,使学生不仅从表面上明白画两种情况的图形,还能分析出为什么要画两种情况,让学生思考可否先画一条直线上的高长为15 cm,然后用刻度尺在高的同侧及异侧画出长度为20 cm和25 cm的线段,这样的图形准确无误更利于学生进一步的思考. 例3有一块梯形菜地,上底、下底不能直接测量,但可测量梯形的高为12m,梯形的两条对角线长分别为15m和20m,试求这块地的面积. 此题相对上题难度更大一些,我引领学生不要急于解决问题,而是思考怎样才能画出符合条件的图形,由于有了上题的提示学生能有一些尝试,已经学会了这种分析问题的方法,我引导学生可否先画出距离为12的两条平行线,分别在高的同侧和异侧画出两条对角线,同学们纷纷动手画图,研究问题的氛围非常浓厚,我想这才是我们要达到的目的. 二、截图问题:题型相对简单,考查知识点为相似三角形的性质及相似三角形对应高的比等于相似比等.常见题型有: 1.直角三角内截等边三角形 例4在△ABC中,∠C=90°,BC=15,AC=20,以C为顶点,作一个等边三角形,其他两个顶点在△ABC的边上,求这个等边三角形的边长. 2直角三角形内截正方形 例5在△ABC中,∠C=90°,BC=15,AC=20,作一个正方形,使它的四个顶点都上三角形的边上,求正方形的边长. 3直角三角形内截矩形 例6为了节省资金,小明的爷爷将一块两直角边长分别为30cm和40cm的直角三角形废镜片割成一块长与宽的比为3﹕2的小长方形镜片,为小明做了一个精美的小镜子,(要求长方形的各个顶点均在直角三角形的边上),请你计算一下长方形镜片的长与宽各为多少厘米? 分析:本题不仅要考虑矩形的两边分别在直角三角形的直角边和斜边上,还要考虑已知条件长与宽的比为3﹕2,由此得到四种情况的图形. |
评论
